








Fig. 5. Illustrating sub-steps of the motions performed during experimentation.

segmentation of the motions was utilised. Secondly, in order
to test the ability to automatically select candidate sequences
for motion characterisation (auto-segmentation), we train a
posture detector on the first five start and finish postures
for each motion using cylindrical data up to five frames
away. For each experiment, per-subject training and testing
was performed, with the average result over four subjects
presented. In both experiments, only the maximal extent
feature was extracted from the visual hull, Figure 1, and
subsequently used for posture recognition.

VI. RESULTS & DISCUSSION

Table I provides the accuracy of the system in motion
recognition when exposed to all remaining motion attempts,
along with the static and fluid motions alone, for gyroscope
only, vision only and the fused system. NA appears as an
entry for Motion 5 since, as there is no difference between
static and fluid attemps, only ten performances were cap-
tured. Tables II and III illustrate the accuracy and precision
of the segmentation subsystem respectively.

A. Classification Accuracy

From the results derived, we can observe the way in which
the motion is performed appears to have an effect on the
classification accuracy, regardless of the modality used. Fluid
motions are almost always distinguished at a lower rate than
static counterparts. In the case of the gyroscope, this may be
explained by an actual change in the variance of the signal –
since under static attempts the user will spend a longer time
stationary. This is a limitation of the approach that needs
to be addressed in subsequent research. In the case of the
vision subsystem, this may again be explained with respect
to a deformation of the posture likelihood curves in the time
dimension. Whilst the temporal HMM should be able to cope
with this, the implementation discussed here uses time as a
feature in posture recognition, reducing time warping ability.

In general, it appears that the gyroscope and vision subsys-
tem are complementary. Motion 2 appears well recognised
by the gyroscope, but poorly determined by the vision
subsystem, whilst the opposite is true of Motion 5. After
fusion, there is a notable increase in Motion 3 All, and Motion

(%) 1/2s 1s 2s 4s 8s 16s
Motion 1 7.83 12.30 24.35 58.28 73.73 73.73
Motion 2 4.50 13.83 50.23 65.38 74.60 75.80
Motion 3 5.68 10.33 28.95 67.13 74.00 75.25
Motion 4 9.53 12.65 29.30 52.73 74.65 77.65
Motion 5 17.63 24.25 48.90 50.90 55.53 55.53
Average 9.03 14.67 36.35 58.88 70.50 71.59

TABLE II
THE PERCENTAGE OF BOUNDARY POINTS MATCHED AS THE SEARCH

AREA IS INCREASED FROM 1/2 SECOND TO 16 SECONDS. AVERAGED

OVER 4 SUBJECTS.

2 Static, both of which outperform the results from either the
wearable or vision based system alone. In general, fusion
offers an overall increase in accuracy of 6.4% over a vision
based system, and 17.2% over a gyroscope alone.

B. Segmentation Subsystem

Given the output from the auto-segmentation algorithm,
we provide results showing both the accuracy and precision
of segmentation, Tables II and III, using a greedy matching
algorithm as the allowable distance between true and de-
tected segmentation boundary is increased. In the first table
we see that only 9% of boundaries are recognised to within
half a second, but as the distance is increased, this reaches
71.6% of boundaries with a sixteen second search space.
Most notable, however, is that whilst the allowable search
space is increased, the majority of matches between detected
segments and true boundaries are close, with an average
frame distance of 63.04 at sixteen seconds. Since the frame
rate is 25 per second, this corresponds to an average distance
of around 2.5 seconds – a perfectly acceptable approximation
which can be passed to the motion characterisation algorithm
as a starting point for a local search.

VII. CONCLUSION

In this paper, we have presented a framework to char-
acterise posture evolution with high accuracy through the
fusion of both ambient and wearable sensing modalities. We
have validated our approach to sensor fusion and shown
preference over each individual sensor alone. A system for



(%) Gyroscope Vision Fusion
All Static Fluid All Static Fluid All Static Fluid

Motion 1 32.3 50.0 22.5 68.0 80.0 67.1 62.3 75.0 55.2
Motion 2 85.0 80.0 87.5 51.5 55.0 50.0 75.5 90.0 68.8
Motion 3 68.3 80.0 62.6 87.2 100.0 97.2 98.3 100.0 93.8
Motion 4 62.8 80.0 56.3 37.7 35.0 38.3 40.1 55.0 34.6
Motion 5 41.7 NA NA 100.0 NA NA 100.0 NA NA

TABLE I
AVERAGE CLASSIFICATION ACCURACY OVER FOUR SUBJECTS. All DENOTES THAT THE CLASSIFIER WAS TRAINED ON THE FIRST 5 PERFORMANCES,

WITH THE REMAINDER USED FOR TESTING (A MIXTURE OF STATIC AND FLUID PERFORMANCES). Static AND fluid DENOTE THE SAME CLASSIFIER

TRAINING WITH TESTING OCCURRING ON THE REMAINING STATIC AND FLUID ATTEMPTS RESPECTIVELY. WHERE FUSION PERFORMS AS WELL AS, OR

BETTER THAN BOTH MODALITIES ALONE, ENTRIES ARE GIVEN IN BOLD TYPE.

(Frames) 1/2s 1s 2s 4s 8s 16s
Motion 1 5.75 8.33 28.80 51.55 67.95 67.95
Motion 2 3.33 9.98 28.63 49.83 57.63 63.29
Motion 3 1.85 8.00 35.72 52.75 58.45 65.63
Motion 4 3.58 5.45 23.35 51.05 72.68 81.55
Motion 5 6.75 10.06 20.25 26.98 36.78 36.78
Average 4.25 8.36 27.35 46.43 58.68 63.04

TABLE III
THE AVERAGE DIFFERENCE (IN FRAMES) BETWEEN TRUE AND

DETECTED BOUNDARY POINTS AS THE SEARCH AREA IS INCREASED

FROM 1/2 SECOND TO 16 SECONDS. AVERAGED OVER 4 SUBJECTS.

auto-segmentation has also been provided to extract candi-
date sequences for recognition and learning. The high level
of subject detail extracted by cylindrical projection enables
complex postures to be detected in a privacy respectful
manner – a property which is essential for home monitoring
environments. In further work we intend to investigate addi-
tional features of cylindrical projection which can be readily
considered by spatial HMMs with increased dimensionality.
We also intend to further validate our probabilistic approach
to convex hull generation. The extent to which this method
can provide improved convex hulls with fewer cameras than
traditional approaches is of key concern for home monitoring
environments. In this vein, we also plan to investigate the
quality of motion characterisation with varying degrees of
camera coverage i.e. at different locations within a room, and
within different rooms with varying camera configurations.
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