Abstract—This paper presents a novel structure learning algorithm for the creation of distributed Bayesian networks over multiple, static and mobile processing units which assist an assistive, intelligent environment for activity recognition. The algorithm provides results demonstrating a higher level of accuracy in the recognition of fine motor tasks when the environment is augmented with a mobile robot and show the ability of our learning algorithm to reduce communication overhead when compared to standard structure learning techniques, enabling home monitoring environments consisting of inexpensive, low power, Vision Sensor Networks (VSNs).

I. INTRODUCTION

Due to recent advances in medical care and the adoption of increasingly healthy lifestyles, we are witnessing a demographic shift towards an increasingly aged population [1]. Consequently, considerable interest has been directed toward research into supportive environments which enable the elderly and infirm to live in their own home for longer. Tentative research has focused on the determination of activities and behavior – since significant changes in either can indicate the onset of certain diseases such as Alzheimer’s or dementia. This could be through networks of privacy respectful ambient cameras [2,3] or wearable sensors [4]. However, robot assisted environments are in a unique position to provide solutions for elder monitoring – since self navigating robots can provide high quality data on subject pose regardless of location within the environment. Furthermore, we may also see robots that provide a form of companionship and aid the elderly in achieving daily tasks [5].

Where environments are to contain multiple ambient sensors, installation may be performed by a visiting carer or those living within the domicile. Consequently, it is unreasonable to expect these to be located at optimal locations for the determination of individual activities. Furthermore, since each dwelling is unique, their relative positioning can not be assumed prior to installation thus there is a strong requirement for such networks to be self-configuring. To this end, we provide a structure learning algorithm for Bayesian networks which is considerate of both inference and communication cost within ambient Vision Sensor Networks (VSNs). Using Pearl’s message propagation algorithm, activity inference can be implemented in a distributed manner over the VSNs, without the requirement for a centralized data repository. Where assistive robots are present, our algorithm can seamlessly incorporate such data to augment recognition accuracy. We demonstrate the efficacy of this algorithm in a home healthcare scenario for fine motor tasks occurring at several locations within the environment.

II. RELATED RESEARCH

For detecting activities of daily living, omni-directional cameras [6] have previously been employed to capture behavioral patterns in a household environment. For example, a system operating at multiple resolutions has been defined, with a wide angle camera directing the pan, tilt and zoom of other cameras [7]. In previous work [3], we have discussed activity recognition within the home and provided results demonstrating how the fusion of ear worn and ambient sensors can increase the accuracy of activity recognition. With this approach, certain fine motor activities could not be readily distinguished, for example, reading and eating. Robot assisted intelligent spaces [8,9] may provide a...
suitable solution, allowing detailed pose information to be garnered from subjects using mobile agents, regardless of their position within the environment. The use of ambient sensors to plan robot trajectories around subject movement [10] and human following [8] have been addressed in this context, amongst other navigation approaches [11]. Structure learning for robot localization is addressed in [12], however all features are locally obtained by the robot. Structure learning under constraints is not new [13] but to our knowledge, limited research has considered the physical location and utility of individual features to perform real time communication and inference in a robot assisted intelligent environment.

III. INTELLIGENT ENVIRONMENT

The intelligent environment proposed within this work consists of four VSN nodes mounted at each corner of our home health monitoring laboratory, Fig. 1. This laboratory has been designed to simulate a room within a typical home and includes a dining table (a), study area (b) and sofa (c). Cameras are arranged to provide coverage for particular areas with some overlap, however they are non-optimal for all regions. For example, it can be seen that VSN-9 provides no coverage of the sofa at station (c). In addition, a VSN node is also mounted upon a mobile robot programmed to follow subjects within the environment.

A. Video Sensor Nodes

The VSN nodes comprise an Omnivision OV9655 1.3 megapixel camera, a 500MHz Analog Devices Blackfin BF537 Processor, 256MB SDRAM, 32MB SPI Flash, and a Lantronix Matchport WLAN 802.11g/b Wi-Fi board for wireless communication. For each individual pixel captured by the device a statistical model is built and maintained to account for slow changes in light conditions as well as object displacement. For this purpose, a mixture model of three Gaussian distributions is employed, as suggested by Lee [14]. Once segmentation has been performed, further erosion and dilation filters are applied in order to remove inherent high-frequency noise, see Fig. 2. The center and axis-aligned bounding boxes (AABB) of the subject are then computed, followed by the Oriented Bounding Boxes (OBB), based upon Principal Component Analysis (PCA).

In order to discount the mobile robot when generating features from the wall mounted VSN nodes, a luminous skirting was applied to the robot’s exterior, Fig. 3. The colour of this skirting is known in advance by the environmental sensors, allowing this colour and surrounding regions to be discounted from the background model during both learning and testing phases. Currently, video processing for all VSN nodes is performed offline.

B. Mobile Robot

The Peoplebot Robot [15], Fig. 3, is equipped with an autonomous navigation system using a time-of-flight camera [16]. The system locks onto the person by building a shape descriptor and tracks using an Interacting Multiple Model Filter (IMMF) [17]. The robot is programmed to keep the person centered in the time-of-flight range map and maintain a distance of 1.5m. Path-planning uses a kinematic dynamic window approach to build a safe and accurate path to the person. In order to ensure the quality of features obtained from the robot, background models are learnt only once the robot is static. In addition to the features generated by fixed VSN nodes, our mobile device also calculates optical flow using the method proposed by Horn and Schunck [18].

IV. STRUCTURE LEARNING ALGORITHM

We propose a greedy structure learning algorithm based upon the Bayesian Information Criterion (BIC) [19, 20], which maximizes the information gain of a structure, whilst minimizing the communication required in obtaining remote features. During learning, the algorithm first performs a preprocessing step, before structure learning. During the final phase, the accuracy of inference is evaluated, which can be used to determine the processor responsible for maintenance of activity recognition at a particular station.

A. Preprocessing

For each data set and for each class, the set of cameras and associated feature sets are identified through analysis of person presence within the field of vision. Processing units within these cameras then become candidates for the management of these activities – known as the candidate set, and the union of their associated features is the maximal feature set that can be used to infer activities at this location.

B. Structure Learning

An individual VSN node can build a Bayesian network which is used to infer the activities for which it is a candidate. In order to reduce the size of conditional probability tables that are stored, the number of causal ancestors for a given node is initially limited to 2 and these
must be obtained locally. At each iteration of the algorithm the BIC gain, Equation 2, is evaluated at each potential branch point and with each unused feature. The structure which exhibits the greatest gain is then chosen.

\[
BIC(G, \Theta) = \log P(D | G, \Theta) - \frac{\log N}{2} \dim(G)
\]

\[
\Delta BIC(f) = BIC(\{f \cup G\}, \Theta_G^{ML}) - BIC(G, \Theta_G^{ML})
\]

Equation 1 [19, 20] presents the BIC score. \(D\) denotes the set of data points and \(N\) the magnitude of this set. \(G\) denotes the graph structure under investigation whilst, \(\Theta_G^{ML}\) denotes the maximum likelihood parameters for graph \(G\) with data \(D\). To maximize this equation, \(G\) must model \(D\) without over-fitting. This is achieved through the second term penalty factor, which rewards low complexity structures through the dimensionality function \(\dim\). Equation 2 illustrates the information gain achieved when feature \(f\), is included within network \(G\), although the structure of the composed graph is not presented.

Consequently, during the next iteration, all features from the entire candidate set (which includes the remaining local features) are considered and may join at any branch within the network. Constraints are then reintroduced, such that causal links may only be formed between local features and the maximum branching factor of nodes is returned to 2. This process iterates until either a maximum number of features within the graph is reached or features are exhausted. The purpose of this algorithm is to localize computation and minimize communication requirements between sensor nodes. This is achieved by forcing individual cameras to provide sub decisions in the inference process. We note the efficacy of this approach to home networks where communication may be transient. Should communication be lost, the probability of remote data items can be marginalized out, effectively removing the requirement for communication. This algorithm is summarized in Figure 4.

C. Robot Feature Fusion

In addition to the wall mounted VSN nodes, the robot illustrated in Fig. 3 is free to roam within the environment. For the purpose of this experiment, we assume that the robot never loses visual contact with the subject under surveillance. Consequently, the correlation of data between mobile and static VSN nodes is not a concern. If the experimental environment was not constrained to a single subject, sensor correlation techniques such as those discussed in [2] could be utilised.

In order to account for the difference in relative position between robot and subject, several position invariant features have been utilised. Furthermore, the robot navigation scheme discussed in Section III-B ensures that the robot always stops at a given distance from the target. Where the robot is present at a given station, the VSN node mounted on the robot (VSN-4) is treated in the same manner as static, wall mounted nodes, aside from the additional generation of optical flow features.

Fig. 3. The Peoplebot Robot. Note the luminous skirting for background segmentation as well as the time of flight camera, used for navigation, mounted at the top of the robot.

Table I

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Number of Links</th>
<th>Average Transmission Size (Relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL (NR)</td>
<td>0.89</td>
<td>12.78</td>
</tr>
<tr>
<td>U-SL (NR)</td>
<td>0.89</td>
<td>22.22</td>
</tr>
<tr>
<td>SL (R)</td>
<td>0.78</td>
<td>8.15</td>
</tr>
<tr>
<td>U-SL (R)</td>
<td>0.56</td>
<td>7.78</td>
</tr>
</tbody>
</table>

Average number of communication links to remote sensors with the relative average transmission sizes. Note that the transmission size will vary dependent upon the instantiation status of the sending variable. SL denotes the structure learning algorithm introduced within this paper, whilst U-SL denotes *unrestricted* structure learning – where remote and local features are considered equally. NR illustrates that the robot is not present and R, that the robot is present.
V. EXPERIMENT DESIGN

Our experiment was carried out using 3 subjects within a simulated home environment consisting of 4 static and 1 mobile VSN node, as per Fig. 1. Each user entered the room via the door in the bottom right hand corner and proceeded to perform a series of 5 activities at each of the 3 different locations; sitting still, eating, writing, reading newspaper and reading book. The robot tracked and followed each subject – and each subject waited for the robot to maneuver into place before beginning their activities.

VI. RESULTS

After preprocessing for subject movement it was found that VSN-9 and VSN-12 provided data on station (a), VSN-11 and VSN-12 on station (b) and VSN-11 and VSN-10 on station (c), as per Fig. 1. Where the robot was present, each candidate set was augmented by the robot mounted camera, VSN-4.

In order validate our approach we provide results from several experiments. In all cases, training of the resulting networks is performed using Expectance Maximization (EM) and inference using message passing where all observable features have been instantiated [21]. Training and testing is done on a per subject basis using sub-sampled data with a 2:1 training to test ratio. Firstly, we show activity recognition results using our structure learning scheme with individual VSN nodes only – thus no external communication can be performed as the candidate feature set is restricted to local features. Secondly, we compare our structure learning algorithm at each location using static VSN node candidate sets, against a completely unrestricted scheme – where at each iteration, any feature can be selected provided the generating VSN node is static. Finally, we repeat this experiment with the environment augmented by a mobile robot. In each of these experiments $\alpha=0.8$. In order to obtain representative results for each station, each algorithm is applied and results averaged over all VSN nodes within the candidate set, before being further averaged over all subjects.

A. Activity Recognition using Local Features

In Fig. 5 the average accuracy of activity recognition using local features only at individual VSN nodes is presented. We see a high variance in accuracy, ranging from approximately 62% at VSN-11, location (c) to approximately 86% using only the robots VSN node at location (b). Clearly, the use of a mobile camera for home monitoring is advantageous as, within this experiment, the highest accuracy recognition at each location is seen using the robot alone (VSN-4).

B. Structure Learning Validation without Robot

Fig. 6 presents the average percentage accuracy at each of the 3 locations, averaged over 3 subjects, 5 activities and all VSN nodes in the location candidate set, which does not include the robot. The introduced technique provides a level of overall accuracy that is within 2.5 percentage points of unrestricted learning whilst reducing average communication requirement by 42%, See Table I and Fig. 6.

C. Structure Learning Validation with Robot

Finally, we demonstrate the application of our algorithm when the robot is present within the environment. Using our structure learning algorithm the communication requirement between sensors has dropped by 63% of that required by the unrestricted learning algorithm without the robot, and by 36% compared to the experiment using our algorithm without the robot present. Table I. This can be partly explained by the efficacy of the robot in performing activity recognition – since often only a single data summary is needed from the robot in order to increase overall accuracy of inference at a given camera location. Consequently, we note a negligible difference in communication requirements comparing the proposed structure learning against unrestricted learning when the robot is used. Fig. 7 illustrates the average accuracy in these two cases. Because of the robot’s ability to generate discriminatory features for fine motor tasks, unrestricted learning favors the robot for most branch selections, minimizing communications by default. Overall, using our algorithm with the robot yields a slight increase in accuracy (2.5 percentage points) and detailed analysis shows a reassignment of class accuracy, for example, where VSN-10 is responsible for sitting still at

![Pseudocode](image)

Fig. 4. Structure learning algorithm employed. Note that once a feature has been selected for inclusion in the structure, it cannot be used again. For details regarding branching constraints, refer to Section IV-B.
location (c), the structure produced by our algorithm performs better by 20 percentage points. Nevertheless, where our algorithm is used with mobile VSNs it will always learn structures faster due to a reduction in branch possibilities.

D. Class Accuracy

In order to demonstrate the utility of this system for activity recognition, we provide the average class accuracy obtained during several of the aforementioned experiments, Table II. Firstly, SL Robot Only (RO) presents class specific results when only features from the robot were used. Secondly, with only wall mounted VSN nodes used, results were as found under SL No Robot (NR). Finally, when our algorithm was used to learn structures over both fixed and mobile VSN nodes, we provide the results as SL Robot (R). All results are averaged over all subjects and, where applicable, all VSN nodes within the associated candidate set. We see that, for sitting, book reading and newspaper reading, the robot and the fixed camera system are roughly comparable, however the robot outperforms the fixed system during writing and eating. This could be due to the use of optical flow from the robot mounted VSN node – which is ideally placed to pick up fine motor motion, such as that of the hands. We note that through fusion of fixed and mobile cameras, the system performs better in every activity than if fixed and mobile VSN nodes were used in structure learning.

For each method, results are obtained by averaging over all subjects and VSN nodes within the candidate set, where applicable. SL (RO) provides results when the structure learning algorithm was applied to features from the robot only (RO), whilst SL (NR) details algorithm application without the robot present. SL (R) presents recognition rates when both fixed and mobile VSN nodes were used in structure learning.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sitting</th>
<th>Book</th>
<th>News Paper</th>
<th>Write</th>
<th>Eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL (RO)</td>
<td>81%</td>
<td>77%</td>
<td>77%</td>
<td>84%</td>
<td>92%</td>
</tr>
<tr>
<td>SL (NR)</td>
<td>85%</td>
<td>75%</td>
<td>76%</td>
<td>69%</td>
<td>72%</td>
</tr>
<tr>
<td>SL (R)</td>
<td>88%</td>
<td>86%</td>
<td>83%</td>
<td>84%</td>
<td>86%</td>
</tr>
</tbody>
</table>

For all results are averaged over all subjects and, where applicable, all VSN nodes within the associated candidate set. We see that, for sitting, book reading and newspaper reading, the robot and the fixed camera system are roughly comparable, however the robot outperforms the fixed system during writing and eating. This could be due to the use of optical flow from the robot mounted VSN node – which is ideally placed to pick up fine motor motion, such as that of the hands. We note that through fusion of fixed and mobile cameras, the system performs better in every activity than if fixed cameras were used alone, with an average increase of approximately 10 percentage points per activity.

VII. DISCUSSION

In the aforementioned sections we have shown the utility of our algorithm in reducing the communication required within VSNs during inference in a home healthcare environment, whilst maintaining activity recognition accuracy – specifically when the robot is not present (Table I, Figure 6). We have also seen that intelligent environments can benefit from the use of mobile autonomous agents with regard to activity recognition, although respectable accuracy can be achieved through fixed devices alone (Table II). This leads us to believe that a hybrid system, comprised of multiple Bayesian Networks that are dependent upon robot location and availability, may be the most suitable solution for in-home activity monitoring.

Unfortunately, due to the intensive nature of the structure learning algorithm it would not be possible to determine and compare structures rooted at different VSN nodes in real time – this would need to occur offline and during an initial training phase. We also note that, due to the nature of our algorithm in restricting causal ancestors and since all feature values were instantiated in our experiments, many features within the structure would have remained unconsidered. Interestingly, due to the power of message propagation to operate with incomplete data this raises two further research issues. Firstly, it is possible to effectively reduce the computational requirements on a given node by producing only subsets of the aforementioned features during each clock cycle. Secondly, sub-trees rooted at remote VSN nodes could effectively self-test the quality of their features though partial instantiation of local features, observing the probability of those not instantiated and comparing against locally sensed values.

VIII. CONCLUSION

This paper presents a system for home monitoring consisting of fixed and mobile VSN nodes that achieves high accuracy for fine motor tasks through the inclusion of a mobile agent, whilst minimizing communication during distributed inference when that agent is not present. Such an approach is required for homes to be equipped with inexpensive, low power, low specification sensors that cannot readily perform 3D tracking and configuration. In the future, we intend to extend this framework to manage wearable sensor data and provide additional discriminatory power for activity recognition when compared to robot assisted Vision Sensor Networks alone.

REFERENCES

Fig. 5. Percentage accuracy over all 3 subjects and 5 activities using local features at individual VSNs. Location (a) is given in yellow (bottom), Location (b) in burgundy (middle) while location (c) is in blue (top).

Fig. 6. Average percentage accuracy at each of the 3 locations, averaged over 3 subjects, 5 activities and all VSNs in the locations candidate set. The robot was not used. Blue shows the average activity recognition accuracy where the structure learning algorithm of Figure 4 is used (left). In burgundy, cameras adopted the unrestricted learning method, where features may be selected regardless of location (right). The introduced technique provides a level of overall accuracy which is comparable (within 2.5 percentage points) to unrestricted learning whilst reducing average communication requirement by 42%.

Fig. 7. Average percentage accuracy at each of the 3 locations, averaged over 3 subjects, 5 activities and all VSNs in the locations candidate set – which now includes the robot. Blue shows the average activity recognition where our structure learning algorithm is employed (left), burgundy shows the results using the unrestricted algorithm (right). Overall there is a 9.9 percentage point increase in accuracy when compared to a system where the robot is not used (either with or without the introduced structure learning algorithm). Furthermore, do to the efficacy of the robot in activity recognition, the overall requirement for communication between sensor nodes has dropped by 63% of that required by unrestricted learning without the robot.