
  

  

Abstract— This paper presents the use of distributed 
inferencing with resource optimisation and Spatio-Temporal 
Self-Organising Map (STSOM) for effectively combining the 
wearable and ambient sensors. STSOM is an efficient local 
processing technique which is also suitable for enhancing the 
temporal behaviour of the distributed inferencing model. To 
reduce the complexity of the distributed model, a multi-
objective Bayesian framework for feature selection has been 
proposed for model learning. The validation of the techniques 
has been conducted with activity recognition with both 
wearable and ambient sensors in a lab-based home monitoring 
setting. 

I. INTRODUCTION 
ODY Sensor Networks (BSNs) [1] represent the latest 
evolution of diagnostic tools from the traditional 

episodic management to continuous monitoring of patients’ 
physical and biochemical parameters under their natural 
physiological conditions. This allows the detection of 
transient but life threatening abnormalities and the early 
prediction of adverse events. BSNs can also be used for 
monitoring the health and general well-being of elderly 
individuals from their Activities of Daily Living (ADL) [2, 
3]. In healthcare, BSNs are essential for resource allocation 
and management. In a mass casualty event, BSNs can be 
used to prioritise and locate those who will benefit the most 
from trauma care and rapid surgical intervention [4]. 

Reliable data fusion in BSNs is a challenging task that has 
drawn extensive research interests in recent years. Context-
aware sensing is an important topic in that the environment 
under which the BSNs are deployed can change constantly. 
A context-aware system therefore needs to adapt its 
functionality according to the changing environment. 
Information about the context under which the biological 
and physical signals are collected is also important to the 
detection of clinically relevant episodes. This is because 
similar sensory signals can be interpreted differently 
depending on the context of the patient. One of the pre-
requisites of context-aware sensing is reliable feature 
extraction and multi-sensor fusion.  

While the human body is a self-contained system with a 
complicated internal environment, it can also respond to and 
interact with the external surroundings in a complex manner. 
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It has been illustrated in previous studies [5, 6, 7] that the 
use of wearable sensors can provide an effective means of 
inferring a user’s activity. In a home environment, however, 
there are cases when the use of wearable sensors alone will 
not be sufficient [8]. Poor recognition accuracy can be 
observed in certain classes due to the intrinsic ambiguities of 
the information acquired. To achieve truly pervasive health 
monitoring, additional information from ambient sensors can 
be used to enhance the recognition accuracy. 

Previous work has shown that data transmission is the 
most power-hungry task in BSNs [9]. Continuous 
transmission of raw signals can lead to excessive power 
consumption, and therefore reduces the battery life. It can 
also impose a significant burden on other resources such as 
wireless bandwidth utilisation. Balanced local and 
distributed inferencing is essential for resolving bandwidth 
and power consumption issues in BSNs. To address this 
issue, we adopt a two-tier network architecture based on a 
hybrid network topology as shown in Fig. 1. At the bottom 
level, simple configurations of the local sensors (mostly in a 
star topology) allow low latency data aggregation, and thus 
are ideally suited for wearable on-body sensors. At the 
higher level, a mesh network is typically used to ensure 
scalability and a large spatial coverage. Under the BSN 
environment, this can be used to link ambient sensors in a 
home or hospital environment. At this level, the network can 
rely on existing heterogeneous network infrastructure such 
as ZigBee, WiFi or GPRS. The real-time requirement at this 
level is less critical and the data rate is relatively low as the 
abstraction of the raw data has already been achieved at the 
lower level. 

One of the significant advantages of this two-tier network 
architecture is in the simplicity of managing mobile users. 
For patient monitoring, each subnet can be regarded as a 
collection of sensors worn on the body, where the central 
node can be regarded as the local processing unit, such as a 
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Fig. 1 A system architecture for data inferencing in BSNs. 



  

PDA or mobile phone, for aggregating the sensor 
information and performing local data inferencing. As the 
patient moves around, this subnet can leave and re-join 
different parts of the top-tier network, thus permitting 
seamless patient monitoring anywhere, everywhere. Fig. 2 
illustrates how a BSN moves around and re-connects to 
different parts of the ambient network. 

In our previous studies, we discussed the technical 
challenges of context aware sensing and proposed a number 
of machine learning techniques for context recognition for 
BSNs [10]. The techniques include the use of feature 
selection for optimal sensor placement [11], an autonomic 
sensing framework for distributed inferencing [12], and a 
hierarchical Self-Organising Map (SOM)-based model for 
incorporating temporal information [1, 13]. Each technique 
has been individually validated by experiments on activity 
recognition with wearable sensors In this paper, we will 
present the full integration of the previously proposed 
techniques and demonstrate how to use the framework for 
effectively combining the wearable and ambient sensors. 

II. AN INTEGRATED INFERENCING FRAMEWORK 
The design of the integrated inferencing framework can 

be summarised as follows. In the first layer, the raw signals 
are locally pre-processed and features extraction is 
performed with appropriate feature detectors. In the second 
layer, the local inferencing models generate quantised 
outputs from the continuous input features. In the third 
layer, the distributed model aggregates outputs of the local 
inferencing model to infer the final context decision. This 
section provides brief descriptions of the local and 
distributed inferencing models used in the framework.  

A. A Model for Local Inferencing 
Since the processing power of each sensor node is limited, 

only simple algorithms are suitable for on-board 
implementation. To incorporate the use of temporal 
information into the integrated inferencing framework, we 
propose the use of Spatio-Temporal Self-Organising Maps 
(STSOMs) [1, 13] for local inferencing.  

STSOM extends the traditional SOM with a temporal 
layer and an adaptive mechanism for class separation and 

node expansion. Based on the signal characteristics of the 
input data and the sequence of node activations produced by 
the bottom layer (static map) of the STSOM, the 
corresponding temporal behaviour can be extracted and fed 
into the dynamic layer (dynamic map) of the STSOM. 

The introduction of a temporal layer simplifies the 
recognition of cyclic patterns and enhances the 
discrimination power of the network while in the same time 
significantly reducing the number of neurons involved. The 
simplicity of the processing involved means the technique is 
ideally suited for local processing where on-board 
computational resource is limited. STSOM can therefore be 
used in the pre-processing step for extracting high level 
features and enhancing the temporal behaviour of the 
distributed inferencing model. 

B. A Model for Distributed Inferencing 
In [12], we have presented a framework for developing a 

distributed inferencing model for context recognition with 
BSNs. A novel approach to model learning and inferencing 
based on feature analysis was proposed. Central to the 
proposed concept of distributed inferencing is the use of 
probabilistic graphical models for data abstraction and 
inferencing with belief propagation. The key elements of the 
proposed framework include dependency graph construction 
by using feature selection, causal direction assignment based 
on dependency analysis, computation of model parameters, 
creation of the factor graph representation, and model 
inference by the use of the sum-product algorithm [14]. The 
model structure is formulated by learning the dependencies 
and causalities among the user context and observed 
variables. The separation in the representation of the actual 
measurements and the functional storage in a factor graph 
facilitates the mapping of a logical structure onto a physical 
network, and thus greatly enhances the practical value of the 
proposed technique. A parallel message passing scheme has 
been proposed for the FG inference engine. A summary of 
steps involved in model construction is illustrated in Fig. 3.  

In BSN applications, a good feature depends on a number 
of factors including the quality and availability of the 
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Fig. 3 An illustration of distributed model construction 
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Fig. 2 Inferencing with wearable and ambient sensors when the 
subject moves around in an ambient sensing environment. 



  

sensors, as well as the communication costs between them. 
A multi-objective feature selection framework has been 
developed. The framework extends the original Bayesian 
Framework for Feature Selection (BFFS) algorithm [15] by 
differentiating redundant and irrelevant features through a 
numerically efficient optimisation strategy. Besides feature 
selection, a successful use of multi-objective BFFS for 
defining model structure has also been demonstrated in [12].  

III. EXPERIMENTS AND RESULTS 

A. Data Acquisition and Feature Extraction 
To assess the performance of the proposed integrated 

framework, a similar experiment setting as presented in [8] 
was used for collecting data from more subjects. Both 
wearable and ambient sensors were used. The datasets were 
collected from 5 subjects performing 9 different activities in 
a lab-based home environment. The activities include 1) 
walking, 2) standing, 3) standing (head tilted), 4) sitting, 5) 
reading, 6) eating, 7) sitting (sofa), 8) lounging, and 9) lying 
down. Each activity lasted for approximately one minute. 
The sampling rate used in this experiment was 25 Hz and 
each dataset was divided into 80% for training and 20% for 
evaluation.  

For wearable sensing, an ear-worn Activity Recognition 
(e-AR) sensor is used [16]. The sensor consists of a 3-axis 
accelerometer, allowing angular acceleration, as well as 
linear acceleration and gravity to be detected. The output of 
the accelerometer is a combined measure of all the above 
static and dynamic components. The orientation of the 
sensor can be detected when the sensor is static. This allows 
the estimation of body posture and activity changes. In 
addition to the acceleration values, we also extract the tilt of 
the sensor and a moving window Fast Fourier Transform 
(FFT) [17] features from the wearable sensor.  

For ambient sensing, blob-based vision sensors were 
used. With this technique, the captured video is processed 
on-node in real-time so as to remove any appearance 
information of the subject being monitored. This follows the 
concept of ‘from blobs to personal metrics to behaviour 
profiling’ [18, 19] such that sufficient information about the 
user’s activity is captured without exposing his/her 
appearance details. The silhouette of the subject, also known 
as a blob, are first extracted from the video signal using an 
Gaussian Mixture Model-based statistical background 
segmentation scheme [20]. The binary blob provides the 
information about the subject overall shape and articulation 
of the body. This information alone, however, may not 
provide enough information for the detection of detailed 
activities. Therefore, local motion of the subject is estimated 
using optical flows (apparent motion of the visual features 
within the images).  

Due to the high dimensionality of the images and varying 
spatial relationship between the moving subject and the 
sensor under perspective projection, a direct use of the 

information from the binary blob and optical flow is not 
appropriate. Principal Component Analysis (PCA) [21] is 
applied to the region of interest to derive the Oriented 
Bounding Box (OBB), from which blob-based features can 
be calculated.  

A summary of the features extracted from the raw feature 
set is provided in Table 1. It can be seen that in the second 
input layer, there exist 101 features in total. Features 1-95 
are extracted from the wearable sensor and the rest are from 
the blob sensor.  

B. Results 
The integrated framework was then applied to the training 

dataset of each subject to derive subject-specific models. For 
efficiency, each set of FFT coefficients was clustered with a 
single STSOM, whereas other features were used to train 
each STSOM individually. As a result, a total of 14 
STSOMs were created. In this experiment, a static map with 
64 neurons and a dynamic map with 25 neurons were used. 
Since each STSOM contains a static map and a dynamic 
map, the full dimensionality of the feature vector in the third 
input layer is 28 (one quantised feature channel for each 
map). Node labels were assigned by using the frequency of 
the class activation. In this way, each feature channel in the 
third input layer can have a maximum number of states 
corresponding to the class number. With this method of 
label assignment, each STSOM can be seen as an on-node 
inference engine that provides the classification results 
based on the available input locally. For simplicity, all 
STSOMs in this experiment were created by one pass.  

Since the datasets consisted of 9 activities, 9 binary 
decision nodes were used to represent the presence or 
absence of each activity. The most informative features for 
the classification of each activity were derived using the 
multi-objective BFFS algorithm with the following 
evaluation function: 

 
 ( ) ( ) { }( ) ( )( )

1 1D 1 k
r AUC AUCE Eω ω= − − × − + ×i i if G f f  (1) 

 
where 1ω  is the weighting factor from 0 to 1, ( )

AUC
E  is the 

TABLE 1 
FEATURES EXTRACTED FROM THE WEARABLE AND BLOB SENSORS 

 ID  Feature 
 1  Acceleration on the Z axis 
 2  Acceleration on the X axis 
 3  Acceleration on the Y axis 
 4  Head tilt on Z axis 
 5  Head tilt on X axis 
 6-35  FFT coefficients on Z axis 
 36-65  FFT coefficients on X axis 
 66-95  FFT coefficients on Y axis 
 96  Speed estimation 
 97  Aspect ratio 
 98  Subject height estimation 
 99  Subject optical flow intensity 
 100  Subject optical flow correlation 
 101  Subject optical flow aspect ratio 

 



  

function which returns the expected AUC given by its 
parameters, and { }( ) ,  1k i k= ≤ ≤

i
G f denotes the feature set 

at the beginning of the iteration. With this bi-objective 
function, multi-objective BFFS takes into account both the 
discriminatory power and the amount of redundant 
information in the feature set for the selection process. To 
reduce the search time, variables ks and 1ω were fixed to 2 
and 0.1, respectively. The selection of feature set associated 
with each classification was made based on the criteria that 
an extra feature is added to the feature set with AUC over 
0.99. 

Consequently, the dependency graph can be directly 
derived. The results show that, compared to the initial fully 
connected model, the number of dependency links in the 
models reduced from 252 links to only 23, 29, 26, 23 and 26 
for subjects 1 to 5, respectively. As the dependencies 
between feature and decision nodes are discarded, smaller 
numbers of conditional probability distributions are 
required, thus greatly simplifying the potential computation 
and inter-node communication involved. 

Fig. 4 summarises the static and dynamic maps required 
for the distributed models for each subject. In addition to a 
significant reduction in size and model parameters in the 
distributed models, only half of the entire maps are used in 
the distributed models and not all the continuous features 
need to be calculated. Out of the 14 groups of continuous 
features, only 8 to 10 channels are required. It can be seen 
that for the derived inference model, the optical flow 
correlation feature is in fact not required at all. This 
indicates a significant amount of saving in computational 
resources compared to a fully connected model. 

 

To evaluate the classification performance, the integrated 
models are compared to those with fully connected inference 
model based on using all the low level features. By using 
feature selection for model simplification, the average 
accuracy only decreased modestly from 88.61% to 83.43% 
(~5%), whereas the amount of computational savings 
achieved is about 90%. 

The proposed model can be viewed as a combining 
classifier which uses a higher probabilistic model for 
integrating the output of the local experts (STSOMs) to 
achieve a better accuracy. Fig. 5 shows a comparison of the 
classification results for different models of the test datasets. 
It can be observed that the integrated models (with and 
without feature selection) yield a better accuracy than 
individual STSOMs. It outperforms the centralised STSOM 
of the same dimension for all subjects. Similar to the 
problem found in other neural network models, with random 
weight initialisation, the training of an STSOM can 
sometimes be trapped in local minima. Model selection is 
normally required to solve this problem. Since the training 
of STSOMs in this experiment is achieved in a single pass, 
this could be the reason for the low classification accuracy 
of the centralised STSOM for Subjects 2 and 5. Due to the 
high dimensionality of the input vectors to the second layer 
and the aforementioned local minima problem, STSOM only 
yields a classification accuracy of 71.95% on average. This, 
however, does not seem to affect the accuracy of the 
combined model, thus illustrating the robustness of our 
proposed technique. 

IV. CONCLUSION 
In this paper, we have proposed a framework for 

integrating on-node processing with distributed inferencing 
for combining both wearable and ambient sensors in a 
laboratory based home activity monitoring experiment. In 
this framework, we have used STSOM for local inferencing 
and the sum-product algorithm in a probabilistic graphical 
model for distributed inferencing.  

Different layers of the data processing pipeline have been 
described. These include the extraction of indices from the 
3-axis accelerometer and image features from the video 

 
Fig. 5 A comparison of the classification accuracy of the 14 local 
STSOMs, the centralised STSOM, and the integrated models with and 
without feature selection for the five subjects studied. 
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Fig. 4 A summary of the static and dynamic maps used in the 
distributed model (the red colour indicates map selection) for the five 
subjects studied in this chapter. 



  

sequence. STSOM is then applied to each subset to extract 
both the static and dynamic contents. The experimental 
results have shown that STSOM can provide an effective 
abstraction of the high dimensional data, thus resulting in 
significant savings in data transmission. The local 
classification results of the selected STSOMs can then be 
combined by using the distributed inferencing model for 
final classification.  

It has been shown that the multi-objective BFFS 
algorithm is effective in learning the structure of the 
distributed model and for achieving overall resource 
optimisation. Significant savings in terms of the number of 
features, the number of STSOMs, and the number of node 
connections to be used can be achieved only with minor 
deterioration in the classification accuracy.  

The experimental results of the integrated model show 
that the distributed model provides an effective means of 
combining individual STSOMs, which is reflected from the 
consistently high classification accuracy achieved. 
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